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Abstract 

Digital soil mapping is the creation of a spatial soil information system using field and laboratory 

observation methods coupled with quantitative spatial prediction techniques. Digital soil mapping follows 

the advancement in soil and environmental observations using proximal and remote sensing.  This paper 

discusses the methods in digital soil mapping and shows the application for mapping & monitoring soil 

carbon using two examples. The first example shows the mapping of whole profile soil carbon in Edgeroi, 

Australia. We combined equal-area spline depth functions with digital soil mapping techniques to predict the 

vertical and lateral variation of carbon storage across the area. We also show the uncertainty of the prediction 

using a new technique. The second example is the use of legacy soil data to detect the spatio-temporal 

changes in topsoil organic carbon in the island of Java, Indonesia. 
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Introduction 

There is a global demand for soil data and information for food security and global environmental 

management. This is also a large interest in recognizing the soil system as a significant terrestrial sink of 

carbon. The reliable assessment and monitoring of soil carbon stocks is of key importance for soil 

conservation and in mitigation strategies for increased atmospheric carbon. In this paper we discuss the 

recent advances in digital soil mapping, and show the application for mapping & monitoring soil carbon. 

 

Digital soil mapping is defined as: the creation and population of spatial soil information systems by the use 

of field and laboratory observational methods coupled with spatial and non-spatial soil inference systems 

(Lagacherie et al. 2007). Digital soil mapping does not just produce a paper map; it is a dynamic process in 

which geographically referenced databases are created at a given spatial resolution. A digital soil map is 

essentially a spatial database of soil properties, based on a sample of landscape at known locations. Field 

sampling is used to determine spatial distribution of soil properties, which are mostly measured in the 

laboratory. These data are then used to predict soil properties in areas not sampled. Digital soil maps describe 

the uncertainties associated with such predictions and, when based on longitudinal data, can provide 

information on dynamic soil properties. The process is summarized in Figure 1.  

 

There are three main steps in digital soil mapping.  

Step 1, that of data input, starts with the production of base maps, assembling and calibrating full coverage 

of  covariates from available data [e.g., the 90 × 90 m resolution digital terrain models from Shuttle Radar 

Topography Mission (SRTM v.3)] for the region of interest. Covariates, reflecting state factors of soil 

formation, include terrain attributes, gamma radiometric imagery, multi- and hyper-spectral imagery, 

landuse, geology and prior soil maps.  

 

Step 2 the spatial soil inference system, which involves estimation of soil properties, expressed as estimates 

and their uncertainties. They are derived by using quantitative relations between point soil measurements and 

the spatially covered covariates. The model for digital soil mapping can be written as:  

S = f(s,c,o,r,p,a,n) + e 

where S is soil properties of interest; s soil and other properties of the soil; c climatic properties of the 

environment; o organisms; r topography; p parent material; a age (the time factor); n space (spatial position 

absolute and relative); e: autocorrelated random spatial variation, predicted with a variogram and kriging. 

This is called the scorpan model (McBratney et al. 2003). 
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In step 3, spatially inferred soil properties are used to predict more difficult-to-measure soil functions, such 

as available soil water storage, carbon density, and phosphorus fixation. This is achieved using pedotransfer 

functions built into a soil inference system (McBratney et al. 2002). These soil functions largely determine 

the capacity of soils to deliver various provisioning and regulating ecosystem services. The overall 

uncertainty of the prediction is assessed by combining uncertainties of input data, spatial inference, and soil 

functions. 

 

There is a fourth step which leads to assessment. Step 4 was recently elucidated by Carré et al. (2007). This 

recognizes that the information should be used to provide information to policy-makers as well as land 

managers.  
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Figure 1. Digital soil mapping  

 

Mapping and detecting changes in soil carbon 

Here we provide two examples on the use of digital soil mapping and spatial inference system, for mapping 

and detecting the changes in soil carbon. 

 

Mapping continuous depth functions of soil organic carbon 

The scorpan model was expanded to include full-profile prediction at every point, by fitting the covariates to 

the depth parameters of an equal-area quadratic spline. The so-called continuous layer model provides much 

more detailed predictions.This results in predictions or maps of soil properties at potentially all depths 

(Malone et al. 2010).  Using the Edgeroi district in north-western NSW as the test site, we combined equal-

area spline depth functions with digital soil mapping techniques to predict the vertical and lateral variation of 

carbon storage across the 1500 km
2
 area. Neural network models were constructed for soil carbon to model 

their relationship with a suite of scorpan factors derived from a digital elevation model (r), radiometric data 

(s,p) and Landsat imagery (o). The resulting geo-database of quantitative soil information describing its 

spatial and vertical variation is an example of what can be generated with this proposed methodology (Figure 

2).  

 

We also derived an uncertainty estimates based on a new empirical approach. Uncertainty in this case is 

treated as the probability distribution of the output model errors, which comprises all types of uncertainty 

(model structure, model parameters and data). Our approach is based on fuzzy k-means with extragrades 

(McBratney and De Gruijter 1992), an extension of the method by Shrestha and Solomatine (2006). The 

concept is to partition the model input (covariates) space into different clusters having similar values of 

model errors.  The covariates used for prediction is partitioned into several classes using fuzzy k-means with 

extragrades.  Each class is then represented by a prediction interval determined from the empirical 

distribution. The fuzzy k-means with extragrades method is also used to identify and sufficiently penalize 

those observations outside the domain of the calibration data. Using the class centroids, a new observation  

can be allocated memberships to each of the established classes. Prediction limits for new observations then 

can be calculated as a weighted average of the membership values. 
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Figure 2. The depth at which soil C < 1% 

 

Using legacy soil data to detect temporal changes in soil organic matter. 

The second example deals with the use of legacy data to detect spatio-temporal changes in organic matter at 

a regional scale. Legacy soil data is mostly used to provide information on the spatial distribution of soil. 

However legacy soil data can also be used to detect the temporal changes in soil properties (Saby et al. 

2008).  The model here is based on the soil (s) and time (s) factors. A dataset of soil properties in Indonesia 

from 1930-1990 was compiled by Lindert (2000). The database contained 2,200 best-detailed soil profiles 

from Java which has uneven coverage in time, space, and land use. We extended the Lindert database to 

include new data of 235 profiles from surveys post 1990 conducted by the Soil Research Institute in Bogor. 

Here we are looking at the soil carbon content from the topsoil (Figure 3).  

 

 
Figure 3.  Data density for the period of 1930-1940 (blue dots) and 1990-2007 (red triangles). 

 

Figure 4 shows the topsoil soil carbon content in Java over time, showing a rapid decline of soil carbon from 

the early 1930s to 1970. Java is the most crowded island in Indonesia, with richest soil from volcanic 

activities (Inceptisols, Andisols) and large floodplains (Entisols). Its land is most intensively farmed, and 

thus the organic C trends reflect human activities over time. The median value of C during 1930-1940 is 

2.1%, while the median value in 1960-1970 is 0.7%.This rapid drop is due to the high conversion of forests 

into plantations and food crops. In the early development during the Dutch colonialism, most land 

development is towards plantations such as tea, rubber, coffee, tobacco etc. This is followed by rapid 

conversion to food crops in the 1950s, leading to a massive rice production in the 1960s. This resulted in a 

rapid decline of 1.5% of soil organic C.  Following the decline, there is a slight increase of C after 1970s. 

This is the result of the farmers’ effort to remediate the soil fertility by adding fertilizers, returning crop 

residues, and applying green compost and manures. In the 1990s also there is a large interest in organic 

farming. We can see the increase of organic C to a level of 1.1% in the 2000s. This trend is also observed in 

the quality or organic matter in the soil as measured by C/N values (Figure 4).  
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Legacy soil data come from traditional soil survey with no statistical criteria for sampling. The surveys can 

be selective and may be purposive and changes with space and time (Figure 3). This may lead to biases in the 

areas being sampled over space and time. The consistency and accuracy of laboratory methods used is also 

unknown. However, our empirical analysis is able to show the dynamics of soil organic C over the Java 

island. We argue that because we have large enough samples, we can represent the average soil C level for 

each period. 
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Figure 4.  Soil organic C content and C/N ratio over time for top soils in Java. 

 

Conclusions 

Digital soil mapping allows the mapping and monitoring the changes in soil carbon. mapping the depth 

function allows the quantification of soil carbon across large areas. Legacy soil data also allow us to evaluate 

the dynamics of soil carbon over a large area, as affected by human activities. Although the rates of 

decomposition and accumulations are affected by various environmental conditions, we are able to detect the 

trend in Java. There is a lack of data on the accumulation of carbon over large areas; in this study we are able 

to estimate the average C decomposition rate in the island of Java (topsoil 0-10 cm) during 1930-1950s is 37 

kg/m
2
/year while the accumulation rate during 1990 to 2000s is 27 kg/m

2
/year. 
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